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Abstract
We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies.
The parameterization is global in the sense that it preserves the conformality everywhere except for a few points,
and has no boundary of discontinuity. We analyze the structure of the space of all global conformal parameteri-
zations of a given surface and find all possible solutions by constructing a basis of the underlying linear solution
space. This space has a natural structure solely determined by the surface geometry, so our computing result is
independent of connectivity, insensitive to resolution, and independent of the algorithms to discover it. Our algo-
rithm is based on the properties of gradient fields of conformal maps, which are closedness, harmonity, conjugacy,
duality and symmetry. These properties can be formulated by sparse linear systems, so the method is easy to im-
plement and the entire process is automatic. We also introduce a novel topological modification method to improve
the uniformity of the parameterization. Based on the global conformal parameterization of a surface, we can con-
struct a conformal atlas and use it to build conformal geometry images which have very accurate reconstructed
normals.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Surface parameterization,
global conformal parameterization

1. Introduction
Parameterization is the process of mapping a surface onto
regions of the plane. It allows operations on a surface to be
performed as if it is flat. Parameterization is essential for
many applications including texture mapping, texture syn-
thesis, remeshing, and construction of geometry images.

This paper studies conformal parameterization, which

is defined in 22, 27, 21. Conformality of a map equivalently
means scaling the metric, it is often described as similari-
ties in the small, since locally shapes are preserved and dis-
tances and areas are only changed by a scaling factor 14. A
conformal mapping is intrinsic to the geometry of a mesh 4,
is independent of the resolution of the mesh, and preserves
the consistency of the orientation 21.
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These nice properties make conformal parametriza-
tion suitable for many practical applications. Because of
its angle preserving property, conformal parameterization
has been proposed for texture mapping 23, 14, 21, geometry
remeshing25, and visualization 28, 16, 11. Conformal parame-
terization continuously depends on the metric of the sur-
face, so it can be used to match two similar surfaces. One
such matching method is introduced in 12. Furthermore, all
surfaces can be classified easily by conformal invariants. A
method to compute the conformal invariants for meshes is
introduced in 12.

Many techniques have been developed to compute con-
formal parameterizations, but almost all of them only deal
with genus zero surfaces and have to segment the surfaces
into patches. These methods decompose meshes into topo-
logical disks, and then parameterize each patch individually.
This introduces discontinuity along the patch boundaries and
conformality can not be preserved everywhere. To avoid the
problems associated with discontinuous boundaries, global
conformal parametrization, which preserves conformality
everywhere (except for a few points), is highly desirable.

Global conformal parameterization for closed genus zero
surface has been addressed in 14, 11, 3, 12. Global conformal
parameterization for closed surfaces with arbitrary genus is
investigated in Gu and Yau’s work 12, 10. Global conformal
parameterization for nonzero genus surfaces with bound-
aries still remains an open problem. This paper solves this
problem and discusses its application on constructing geom-
etry images. We also simplify the method introduced in 12

and make the whole process automatic. The algorithms are
based on the Riemann surfaces theories 17. The first figure
shows the global conformal parameterizations for surfaces
with and without boundaries.

1.1. Contribution
We introduce a purely algebraic method to compute global
conformal parameterizations for surfaces with nontrivial
topologies. To the best of our knowledge, this is the first
paper that solves the problem of global conformal param-
eterization of nonzero genus surfaces with boundaries. Our
method of global conformal parameterization has the follow-
ing properties:
• Our method can handle surfaces with arbitrary non zero

genus, with or without boundaries.
• No surface segmentation is needed. The parameterization

is global in the sense that it is conformal everywhere ex-
cept for a few points and is boundary free.

• We find all possible parameterizations. Instead of finding
just one solution, we find a basis of the solution space
from which all the parametrizations can be constructed.

• The method is based on solving large sparse linear sys-
tems, by using conjugate gradient method, it can be solved
in linear time.
We also introduce a way to improve the quality of global

parameterizations, namely by modifying the topology of the

model. Furthermore we show how to construct a canonical
conformal atlas for closed surfaces.

1.2. Previous Work
Surface parameterization has been studied extensively in the
graphics field. General methods are based on functional op-
timization, where special metrics are defined to measure the
deviation of the parameterization from an isometry.

Tutte introduces the Barycentric maps, and proves the
mapping is an embedding in 33. Floater uses specific weights
to improve the quality of the mapping in terms of area de-
formation and conformality. Levy and Mallet 20 take into
account additional constraints to improve the orthogonal-
ity and homogeneous spacing of isoparametric curves of the
parameterization. Maillot et al. 23 introduce a deformation
energy to measure the distortion introduced by the map-
ping. Levy defines another criterion to measure smoothness
and match features in 19. Hormann and Greiner 15 propose
the MIPS parameterization, which roughly attempts to pre-
serve the ratio of singular values over the parameterization.
Sander et al. 29 develop a stretch metric to minimize texture
stretch and texture deviation. Furthermore, Sander et al. 26

design the signal-stretch parameterization metric to measure
the signal error.

1.2.0.1. Conformal parameterization for genus zero sur-
faces Most works in conformal parametrization only deal
with genus zero surfaces.There are four basic approaches.
1. Harmonic energy minimization. Pinkall and Polthier de-

rive the discrete Dirichlet energy in 27. Eck et al. 22 intro-
duce the discrete harmonic map, which approximates the
continuous harmonic maps by minimizing a metric dis-
persion criterion. Desbrun et al. 25, 4 compute the discrete
Dirichlet energy and apply conformal parameterization to
interactive geometry remeshing. Levy et al.21 compute a
quasi-conformal parameterization of topological disks by
approximating the Cauchy-Riemann equation using the
least square method. Gu and Yau in 12 introduce a non-
linear optimization method to compute global conformal
parameterizations for genus zero surfaces. The optimiza-
tion is carried out in the tangential spaces of the sphere.

2. Laplacian operator linearization. Haker et al. 14 intro-
duce a method to compute a global conformal mapping
from a genus zero surface to a sphere by representing the
Laplacian-Beltrimi operator as a linear system.

3. Angle based method. Sheffer et al. 31 introduce an an-
gle based flattening method to flatten a mesh to a pla-
nar region so that it minimizes the relative distortion of
the planar angles with respect to their counterparts in the
three-dimensional space.

4. Circle packing. Circle packing is introduced in 32, 16.
Classical analytic functions can be approximated using
circle packing. But for general surfaces in R3, circle pack-
ing only considers the connectivity but not geometry, so
it is not suitable for our parameterization purpose.
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(a) Homology basis (b) Gradient field ω (c) Gradient field ∗ω (d) A conformal gradient field
dual to e1. orthogonal to (b) ω +

√
−1∗ω

Figure 1: A conformal gradient field of a two hole torus. (a) shows the homology basis, which are four closed curves. (b) shows
the vector field ω dual to e1, i.e.

R

e1
ω is nonzero,

R

ei
ω = 0, i = 2,3,4. The shaded curves are the integration lines of the vector

field. (c) shows the vector field ∗ω that is orthogonal to (b) everywhere. (d) shows a conformal gradient field ω +
√
−1∗ω.

1.2.0.2. Global conformal parameterization for nonzero
genus closed surfaces The problem of computing global
conformal parameterizations for general closed meshes is
first solved by Gu and Yau in 12. The proposed method ap-
proximates De Rham cohomology by simplicial cohomol-
ogy, and computes a basis of holomorphic one-forms. The
method has solid theoretic bases, but it has some limitations
of the geometric realization of the homology basis. Each
homology base curve can only intersect its conjugate once.
Hence the method is not automatic and needs users’ guid-
ance. Also, this method can not handle surfaces with bound-
aries.

The purely algebraic method introduced in this paper is
based on the method in 12, but it has no restrictions on the
geometric realization of the homology basis. This method
is much simpler and it is automatic. We also generalize this
method to handle surfaces with boundaries.

1.2.0.3. Computational topology The computation of ho-
mology group and polygonal schema has been studied in
34, 18, 5, 6. It is shown in 8 that it is NP-hard to compute an
optimal polygonal schema with the shortest cut.

2. Basic Idea and Sketch of Mathematical Theories
In order to compute conformal maps, we compute their gra-
dient fields first. Each gradient field of a conformal map is
a pair of tangential vector fields with special properties. All
such vector fields form a linear space. We will show how
to construct a basis of this linear space by solving a linear
system derived from these properties. We can then get a gra-
dient field of a conformal map by linearly combining the
bases. Then by integrating the conformal gradient field, we
obtain a conformal parameterization.

In this paper, we use the terms gradient fields and confor-
mal gradient fields to refer to the mathematically more rig-
orous terms closed one-forms and holomorphic one-forms1.
A conformal parameterization maps a local region of a sur-
face to the complex plane. We denote its gradient field as
ω +

√
−1∗ω, where ω and ∗ω are real gradient fields. Ac-

cording to Riemann-Roch theory 1, all such conformal gra-

dient fields form a linear space, whose structure is closely
related to the topology of the surface.

We use homology group to represent the topology of the
surface. All curves on a surface form a homology group as
introduced in Appendix A. A homology basis is a set of
curves that can be deformed to any closed curves on the sur-
face by operations including replicating, merging, and split-
ting. We use a set of loops {e1,e2, · · · ,e2g} to denote a ho-
mology basis, where g is the genus. A surface can be cut
along a homology basis (a cut graph) to a topological disk,
which is called a fundamental domain. Figure 2 (a) demon-
strates a homology basis of a genus 4 surface, (b) shows the
boundary of its fundamental domain, both of them are manu-
ally labelled. The cohomology group is the linear functional
space of the homology group, which is defined in Appendix
A also.

According to Riemann surface theory, conformal gradient
fields ω +

√
−1∗ω have the following properties:

• closedness ω and ∗ω are closed, meaning the curlix of ω
and ∗ω are both zero.

• harmonity ω and ∗ω are harmonic, meaning that the
Laplacian of both ω and ∗ω are zero.

• duality The cohomology class of ω and ∗ω can be deter-
mined by the values of their integration along the homol-
ogy basis ei’s.

• conjugacy ∗ω is orthogonal to ω everywhere.
According to Hodge theory, given 2g real numbers
c1,c2, · · · ,c2g, there is a unique real gradient field ω with the
first three properties, because each cohomology class has a
unique harmonic gradient field ω. These properties for ω can
be formulated as the following equations:







dω = 0
∆ω = 0

R

ei
ω = ci, i = 1,2, · · · ,2g

(1)

The equation dω = 0 indicates ω is closed, where d is the
exterior differential operator; The equation ∆ω = 0 repre-
sents the harmonity of ω, where ∆ is the Laplacian-Beltrami
operator; The equations

R

ei
ω = ci, i = 1,2, · · · ,2g restrict the
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(a) A homology basis. (b) The boundary of
a fundamental domain

Figure 2: (a) and (b) illustrate a topological model for gen-
eral surfaces. A general surface can be represented as a
sphere glued with several handles. Each handle has two spe-
cial curves, which form a basis of the homology group. Each
surface can be sliced open to a topological disk - a funda-
mental domain.

cohomology class of ω. The conjugacy property can be for-
mulated as

∗ω =~n×ω, (2)

where ~n is the normal field on the surface, × is the cross
product in R3. This equation holds everywhere on the sur-
face.

The solution ω to equations 1 depends on ci linearly. The
linear solution space is 2g dimensional. We can compute
a basis {ω1,ω2, · · · ,ω2g} of the solution space, such that
R

ei
ω j = δ j

i , where δ j
i is the Kronecker symbol. Then the

solution ω corresponding to {c1,c2, · · · ,c2g} can be repre-
sented as ω = ∑2g

i=1 ciωi. This paper uses linear systems to
approximate equations 1 and 2 on meshes and automatically
computes a basis of conformal gradient fields. Once a con-
formal gradient field is obtained, we integrate it on a funda-
mental domain to find a conformal parametrization.

For surfaces with boundaries, we apply the double cov-
ering method to convert them to closed ones. We get two
copies of the surface, reverse the orientation of one of them,
and glue them along the boundaries, then obtain a symmet-
ric closed surface. We can compute the conformal gradient
fields on the double covering of the surface, and find confor-
mal gradient fields for the original surface with boundaries.

Figure 3 demonstrates the base conformal gradient fields,
visualized by integrating them on a fundamental domain and
texture-mapping a checkerboard image.

3. Algorithm for Closed Surfaces
We have just sketched the analytical basis for computing
global conformal parameterization. Now we describe a nu-
merical procedure to carry this out. The main task is to trans-
form the mathematical concepts defined on smooth surfaces
to operations on triangulated meshes. Assume that M is a tri-
angulated mesh. We continue to use the notation of previous

section. We also use u,v,w to denote vertices of M, [u,v] to
denote an edge, and [u,v,w] to denote a face.

The methods of computing homology basis are described
in 24 or 18. We briefly summarize it here. In our implementa-
tion, we compute the eigenvectors of the following matrix

∂T
1 ∂1 + ∂2∂T

2 , (3)

where ∂1 and ∂2 are the matrix representation of the bound-
ary operators. ∂1 returns the boundary of a curve, and ∂2
returns the boundary of a patch. The details are explained in
Appendix A. Each eigenvector of the null space is a homol-
ogy base curve. We denote each base as ei, i = 1,2, · · · ,2g.
ei can be represented as a sequence of oriented edges, for
example, [u0,u1], [u1,u2], · · · , [un−1,un], where un = u0.

Recall that a conformal gradient field is represented as
ω+

√
−1∗ω, we approximate ω by a function defined on the

edges, and associate each edge with a real number, denoted
as ω[u,v].

3.1. The Real Part of Conformal Gradient Fields
This subsection computes the real part ω of the conformal
gradient field by using the closedness, harmonity, and dual-
ity properties.

The closedness property dω = 0 means the integration of
ω along any simple closed curve (which bounds a topologi-
cal disk) is zero. Hence for each face [u,v,w], the integration
of ω along its boundary ∂[u,v,w] is zero. Then for each face,
the equation for closedness can be approximated by the fol-
lowing linear equation:

ω(∂[u,v,w]) = ω[u,v]+ ω[v,w]+ ω[w,u] = 0. (4)

The harmonity property ∆ω = 0 can be formulated using
the well known cotangent weighting coefficients 7, 4. For any
vertex u, the Laplacian of ω on u is zero, hence the equation
for harmonity can be formulated as:

∆ω(u) = ∑
[u,v]∈M

ku,vω[u,v] = 0 (5)

ku,v = −1
2
(cotα + cotβ) (6)

Figure 3: Visualizations of two base conformal gradient
fields by texture mapping a checkerboard.
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where α,β are the angles against the edge [u,v].
The duality property

R

ei
ω = ci can be formulated in a

straightforward way. Suppose homology base ei consists of
a sequence of oriented edges ei = ∑n

j=1[u j−1,u j], where
u0 = un, then

Z

ei

ω =
n

∑
j=1

ω[u j−1,u j] = ci. (7)

Compared with previous methods in 21, 22, 4, 7, we have
used the duality condition to replace boundary conditions.

By combining equations 4, 5, and 7 together, we get the
discrete version of the system of equations 1:










∑3
j=1 ω([u j−1,u j]) = 0,∀[u0,u1,u2] ∈ M,u0 = u3

∑[u,v]∈M ku,vω([u,v]) = 0,∀u ∈ M
∑ni

j=1 ω([ui
j−1,ui

j]) = ci,∀ei = ∑ni
j=1[u

i
j−1,ui

j],u0 = uni

(8)
In order to get a basis of the conformal gradient fields, we
choose 2g sets of {ci}, where the jth set is {δi

j}. In Ap-
pendix B, it is proven that the linear system 8 is of full rank.
This is the discrete analogue of Hodge theory, which claims
each cohomology class has a unique harmonic one-form rep-
resentative 17.

Once we have computed ω, we can compute ∗ω by using
the discrete Hodge star operator, which will be introduced
in the next subsection.

3.2. The Imaginary Part of Conformal Gradient Fields
Having selected an ω in the space of ωi, we compute the
imaginary part of the conformal gradient field ∗ω by using
the conjugacy property.

The Hodge star operator is defined on the gradient fields
on smooth surfaces. Intuitively, it locally rotates each vec-
tor a right angle about the normal at each point. ∗ω can be
obtained by applying the Hodge star operator on ω. This sub-
section uses a linear system to approximate the Hodge star
operator on triangulated meshes.

Suppose {ω1,ω2, · · · ,ω2g} are a set of basis of all the
solutions to linear system 1, then both ω and ∗ω can be
represented as a linear combination of ωi’s. Suppose ∗ω =

∑2g
i=1 λiωi, our goal is to find out λi’s.
Given two gradient fields ω,τ, the wedge product ∧ on

smooth surfaces is defined as the following integration
Z

M
ω∧ τ =

Z

M
ω× τ ·~ndσ, (9)

where~n is the normal field of M, dσ is the area element, and
the × and · are the common cross product and dot product
in R3. This can be approximated by the discrete wedge prod-
uct defined below. The details can be found in Appendix C.
Suppose {d0,d1,d2} are the oriented edges of a triangle T ,
their lengths are {l0, l1, l2}, and the area of T is s, then the
discrete wedge product ∧ is defined as

Z

T
ω∧ τ =

1
6

∣

∣

∣

∣

∣

∣

ω(d0) ω(d1) ω(d2)
τ(d0) τ(d1) τ(d2)

1 1 1

∣

∣

∣

∣

∣

∣

(10)

The star wedge product ∗∧ of ω and τ on smooth surfaces
is defined as follows:

Z

M
ω∗∧ τ =

Z

M
ω∧ ∗τ =

Z

M
ω× ∗τ ·~n, (11)

where ∗τ is obtained by rotating τ about the normal~n on the
tangent plane at each point of M. The discrete star wedge
product on meshes is defined as

Z

T
ω∗∧ τ = UMV T , (12)

where

M =
1

24s





−4l2
0 l2

0 + l2
1 − l2

2 l2
0 + l2

2 − l2
1

l2
1 + l2

0 − l2
2 −4l2

1 l2
1 + l2

2 − l2
0

l2
2 + l2

0 − l2
1 l2

2 + l2
1 − l2

0 −4l2
2



 ,

(13)
and vectors U,V are

U = (ω(d0),ω(d1),ω(d2)) (14)

V = (τ(d0),τ(d1),τ(d2)). (15)

We can build a linear system to solve for λi’s based on the
following formula:

Z

M
ωi ∧ ∗ω =

Z

M
ωi

∗∧ω, i = 1,2, · · · ,2g. (16)

Equivalently, we can expand each term, use discrete wedge
products and discrete star wedge products to get the follow-
ing linear system directly

W Λ = B, (17)

where W has entries wi j = ∑T∈M
R

T ωi ∧ω j , Λ has entries
λi, and B has entries bi = ∑T∈M

R

T ωi
∗∧ω. In appendix D,

we show that the linear system 17 is of full rank.

3.3. Conformal Map
By solving the linear system in section 3.1, we can compute
{ω1,ω2, · · · ,ω2g}. By solving the linear system in section
3.2, we can compute {∗ω1,

∗ω2, · · · , ∗ω2g}. The conformal
gradient fields {ω1 +

√
−1∗ω1,ω2 +

√
−1∗ω2, · · · ,ω2g +√

−1∗ω2g} are a set of basis of all conformal gradient fields
on M.

From the finite dimensional space of all possible confor-
mal gradient fields, we can select a desirable one for the ap-
plication. For example, if we want to optimize the unifor-
mity, we can formulate it as a finite dimensional optimiza-
tion problem to minimize the L2 norm of the derivative of
streching factor function on surface. Once we get the confor-
mal gradient field, we integrate it on a fundamental domain
of the surface to get the conformal map.

We first compute a fundamental domain of M as described
in 12. We choose one base vertex u0, which is mapped to
the origin of the complex plane. For any vertex v ∈ M, we
arbitrarily choose a path from u0 to v in the fundamental
domain. Suppose the path is e = ∑n

i=1[ui−1,ui], un = v, then
c© The Eurographics Association 2003.
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the complex texture coordinates of v are
Z

e
ω +

√
−1∗ω =

n

∑
i=1

ω[ui−1,ui]+
√
−1

n

∑
i=1

∗ω[ui−1,ui].

(18)
The complex texture coordinates are path independent, this
can be shown by using the fact that both ω and ∗ω are closed
and the Stokes theorem.

4. Surfaces with Boundaries
This section generalizes the method for computing con-
formal gradient fields for closed surfaces to surfaces with
boundaries.

4.1. Double Covering
Suppose surface M has boundaries, we construct a copy of M
denoted as M′, then reverse the orientation of M′ by chang-
ing the order of vertices of each face from [u,v,w] to [v,u,w].
We then glue M and M′ together along their boundaries. The
resulting mesh is denoted as M, and called the double cover-
ing of M. The double covering is closed so we can apply the
method discussed in the last section.

For each interior vertex v ∈ M, there are two copies of v
in M, we denote them as v1 and v2, and say they are dual to
each other, denoted as v1 = v2 and v2 = v1. For each bound-
ary vertex v ∈ ∂M, there is only one copy in M, we say v is
dual to itself, i.e. v = v.

4.2. Symmetric Conformal Gradient Fields
We now compute the conformal gradient fields of M. Ac-
cording to Riemann surface theories 30, all symmetric con-
formal gradient fields of M restricted on M are also con-
formal gradient fields of M. The real part of a symmetric
conformal gradient field satisfies the following property:

ω[u,v] = ω[u,v]. (19)

We can simply perform the process described in the last
section on M: compute homology basis of M; compute ωi’s;
compute ∗ωi’s. Then ωi +

√
−1∗ωis are a set of basis of all

conformal gradient fields on M. Define the dual operator for
each gradient field ω as follows:

ω([u,v]) = ω([u,v]),∀[u,v]∈ M. (20)

The dual operator exchanges the numbers a gradient field as-
sociates with an edge and its counterpart in the double cov-
ering. Then any ω can be decomposed to a symmetric part
and an asymmetric part:

ω =
1
2
(ω + ω)+

1
2
(ω−ω), (21)

where 1
2 (ω + ω) is the symmetric part.

Given a conformal gradient field ω +
√
−1∗ω on M, the

symmetric component 1
2 (ω+ω)+

√
−1 1

2
∗(ω+ω) is also a

conformal gradient field of M. If we restrict it on M, then

{1
2
(ωi + ωi)+

√
−1

1
2
∗(ωi + ωi)} (22)

(a) Zero point of the open teapot (b) Zero point of f (z) = z2

Figure 4: Zero points of parameterization.

are a set of basis of conformal gradient fields on M.

5. Global Conformal Atlas
In the last two sections, we have introduced a method to
compute conformal gradient fields for general surfaces, and
by integrating a conformal gradient field on a fundamental
domain, we can conformally map the surface to the complex
plane.

This section analyzes the global structure of the image of
a conformal mapping. For a general surface M, each handle
of the surface is conformally mapped to the complex plane
periodically, where each period is a parallelogram. The set
of such parallelograms for g handles is the global conformal
atlas of M.

If the surface is of genus one, then the mapping is one-to-
one. Otherwise, the mapping is in general one-to-one locally,
but there are 2g−2 special points that are called zero points.
In the neighborhood of zero points, the mapping has special
structures. The local structure of the zero points is explained
below.

5.1. Zero Points
According to the Poincare-Hopf index theorem 13, a confor-
mal gradient field ω must have zero points if M is not homeo-
morphic to a torus. Zero points of ω are the points where the
mapping is degenerated. According to Riemann-Roch the-
ory, there are totally 2g−2 zero points for a genus g surface.
The map wraps the neighborhood of each zero point twice
and double covers the neighborhood of the image of p on
the complex plane. Locally, the map is similar to the follow-
ing map f : C →C in the neighborhood of the origin:

f (z) = z2. (23)

Figure 4 demonstrates the zero points on the global con-
formal parameterizations. For the open teapot model, its
double covering is of genus two. There are two zero points,
one of them is illustrated near the bottom.

In order to find the zero points, we define the following
stretching factor for each vertex u ∈ M,

s(u) =
1

valence(u) ∑
[u,v]∈M

||ω[u,v]||2
||[u,v]||2 . (24)
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(a) Genus two surface (b) Conformal atlas of (a) (c) Genus three surface (d) Conformal atlas of (c)
Figure 5: Global conformal atlas. For a genus g surface, there are 2g − 2 zero points. We pair them to g − 1 pairs, and
construct a loop to go through each pair. These loops separate the handles. Each handle is mapped conformally to a modular
parallelogram. The conformality is preserved across all the boundaries. The grey disks show the modular structure of each
handle, the grey line segments are handle separators, the white disks show that conformality is preserved across the handle
separators.

The minimum points of s(u) approximate the positions of
the zero points.

5.2. Modular Structure of Each Handle
Given a topological torus M and a conformal gradient field
ω on it, we pick a base point u0 and issue curves from u0 ar-
bitrarily to any point on the surface. By integrating ω along
these curves, we map M to the plane conformally. The curves
can be extended to infinity, and the mapping can also be con-
sistently extended. The image set of the base point is

{a
Z

e1

ω + b
Z

e2

ω|a,b ∈ Z}, (25)

where {ei} are homology basis curves.
The mapping is periodic or modular. Then the entire torus

is conformally mapped to one period, which is a parallelo-
gram spanned by

R

e1
ω,

R

e2
ω. The top and bottom of the par-

allelogram are identical, the left and right are identical, and
the four corners are identical. We call this parallelogram a
modular space and use it as the global conformal atlas of M.
We call {R

e1
ω,

R

e2
ω} the periods of M.

Suppose the genus of M is greater than one, then we can
still map each handle to a modular space, but now differ-
ent handles may have different periods. The entire surface is
mapped to g overlapping modular parallelograms. Two par-
allelograms may attach to each other through the images of
zero points, and cross each other between the images of the
zero points. We can separate the parallelograms, therefore
separate the handles.

As shown in figure 5 (a) and (b), the two-hole torus is
separated into two handles, and each handle is conformally
mapped to a modular space. The mapping across the bound-
ary is still conformal. The grey disks on the two handles in
(a) are mapped to the modular spaces in (b); this illustrates
the modular structure of the conformal parameterization of
each handle. (c) and (d) demonstrate a global conformal pa-
rameterization of a genus three torus. From (d) we can tell
that each handle has different period.

The grey line segments in the interior of each modular
space are the images of the closed curves which separate
different handles, and they are called handle separators. The
ending points of the handle separators are zero points. The
next subsection will explain how to find the handle separa-
tors.

5.3. Handle Separation
For general surfaces M with genus higher than one, by in-
tegrating ω on a fundamental domain, M is conformally
mapped to g overlapping modular parallelograms on the
complex plane. This subsection discusses how to separate
these parallelograms to construct the global conformal atlas.

Suppose the conformal mapping is f . Between two adja-
cent handles on M, there are two zero points, p0 and p1. We
can always find a closed curve that goes through them and
separates the handles. We denote the curve segment from p0
to p1 as [p0, p1], and the curve segment from p1 to p0 as
[p1, p0]. Then ~f maps [p0, p1] and [p1, p0] to the same curve
segment on the plane. We call this kind of curves handle sep-
arators.

In figure 5, the handle separator is shown on the two-hole
torus as the boundary of two regions. It is mapped to the line
segments on the modular spaces in (b).

The mapping is conformal across the handle separator.
The white disk in (a) across the handle separator is mapped
to two half disks on the two modular spaces in (b). We
can see that the conformality is preserved across this handle
separator. Similarly, there are two handle separators in (c),
which are mapped to two line segments in the three mod-
ular spaces as in (d), the two white disks demonstrate that
conformality is preserved across them.

The zero points and the handle separators are determined
by the conformal gradient field. So handle separation is
different from traditional segmentation, which is processed
before the parameterization. In practice, we examine the
stretching factor of each vertex, and select the minima as
zero points. Any two adjacent handles are mapped to two
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parallelograms, attached by two zero points. We simply
choose the line segment connecting the two zero points on
these two parallelograms, and their pre-images are the han-
dle separators on the surface.

6. Implementation
The implementation of the algorithms is very simple, since
it only involves solving sparse linear systems. We use itera-
tive methods to solve them. We use both steepest descendent
method and conjugate gradient method. The conjugate gra-
dient method is linear. In order to improve the stability and
efficiency, the meshes are preprocessed first.

6.1. Preprocessing
In 7, it is shown that if the mesh has obtuse angles, the dis-
crete harmonic map is not bijective, i.e. local triangle flips
may occur. During our numerical experiments, we find that
efficiency and stability are related to the positivity of string
constants ku,v. Bern et.al 2 introduce a method to triangulate
planar regions with non-obtuse angles. For general surfaces
with arbitrary topologies, it is still an open problem to trian-
gulate them with all acute angles. In appendix E, we show
that all smooth surfaces admit a triangulation with all acute
angles, such that all the ku,v’s are positive.

In our implementation, we do some simple preprocessing
to remove obtuse angles by heuristic methods. We subdivide
the mesh to very fine level, and use edge collapse to remove
edges with the minimum lengths to simplify the subdivided
mesh. The complexity of the simplified mesh is similar to
the original one. After several processes, the angles of the
resulting mesh are almost all acute without increasing the
complexity of the mesh.

6.2. Topology Modification
Conformal parametrizations map surfaces to canonical pa-
rameter domains, and encode the three channel geometric in-
formation (x,y, z) to one channel stretching factor function.
The stretching factor has to be nonuniform. For the extruding
parts, such as the ears of the bunny, the stretching factors are
highly nonuniform. This is illustrated in figure 8 (a) in color
section, when the bunny is conformally mapped to a sphere,
the ears parts are shrunk to tiny regions. The corresponding
parameterization in (b) indicates the high nonuniformity of
this parameterization.

Here we introduce a topological modification method
to deal with this problem. Because the parametrization is
highly dependent on the topology, by punching small holes
on the surface, we can change the topology easily without
affecting the geometry too much. Generally, we remove sev-
eral faces from the extruding parts of the surface manually,
for example at the ear tips and the center of the bottom of
the bunny, and compute its global conformal parametriza-
tion. The results for the bunny are as shown in (c) and (d).
The uniformity of the parameterization is improved a great
deal. The original surface is of genus zero, after topology
modification, it is of genus two.

6.3. Summary of the Process
Figure 7 in color section illustrates the process of the global
conformal parameterization and the construction of a con-
formal geometry image 9 for the bunny mesh.

Topology Modification First, three holes are punched at
the tips of the ears and the bottom of the bunny model in or-
der to improve the uniformity of the parameterization.
Double Covering We make two copies of the mesh, reverse
the orientation of one of them, and glue them together along
the boundaries of the three punched holes. The punched
holes and the two copies are illustrated in (a), one of them is
displayed as a wireframe.
Homology Basis A homology basis of the double covering is
shown in (b) as the blue curves.
Conformal gradient Field We then solve a set of linear sys-
tems 8 and 17 to find a basis of the conformal gradient field
space on the double covering. Then we choose the symmet-
ric conformal gradient fields basis 22 on M. Figures (c) and
(d) are two such base conformal gradient fields.
Conformal Atlas By linearly combining the base gradient
fields, we can construct all global conformal parameteriza-
tions. We select one with a highly uniform stretching factor
function as shown in (e) and map the bunny to the global
conformal atlas as shown in (f). From the shading, we can
locate the ear, head and body parts. (g) are two geometry
images constructed from (f) directly. The geometry images
have very good qualities in terms of the reconstructed nor-
mals, and regular connectivities, which are shown in (h).

6.4. Results
We have applied our method to different data sets, com-
prising meshes created with 3D modelers and scanned
meshes. We tested our algorithm for meshes with different
topologies, different resolutions, with boundaries or without
boundaries.

Figure 6 demonstrates that our algorithm is insensitive to
different triangulation and resolutions. A teapot mesh is sim-
plified to reduce the resolution, and the connectivity is also
changed. The global conformal parameterizations are illus-
trated by texture mapping a regular checkerboard. Compar-
ing (a) and (c), we can tell the changes in resolutions and
triangulation. (b) and (d) show the similarity of the parame-
terizations.

Figure 9 in color section shows several results for differ-
ent meshes. (g) is a minimal surface model of genus one with
three boundaries. Its double covering is of genus four, with
10k vertices and 20k faces. The most complicated model we
tested is the whole body David model (f), the double cover-
ing is of genus 16, 365k vertices, 730k faces. This demon-
strates the algorithm is robust enough for practical applica-
tions. The sculpture model in (h) is of 5k vertices, 10 k faces.
The knot model (e) is of 2050 vertices and 3672 faces.

7. Summary and discussion
We have introduced a purely algebraic method to compute
global conformal parameterizations for surfaces with arbi-
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(a) Original teapot model (b) Global conformal (c) Simplified teapot model (d) Global conformal
parameterization parameterization

Figure 6: Global conformal parameterization algorithm is insensitive to triangulation and resolution.

trary nontrivial topologies, with or without boundaries. This
method can be used to compute all possible solutions. Each
genus g closed surface can be conformally mapped to g mod-
ular parallelograms. The conformality is preserved all over
the surface except for 2g − 2 zero points. The parameteri-
zation is intrinsic to the geometry only. The canonical atlas
constructed in this paper can be used to construct geometry
images that have accurate reconstructed normals. In order
to improve the uniformity of the parameterization, we have
also introduced a topology modification method.

According to Klein’s Erlangen program, different geom-
etry branch studies the invariants of a space under differ-
ent transformation group. The topological structure and Eu-
clidean geometric structure are well studied in computer sci-
ence. But the conformal structure has not been adequately
studied or applied in the field. This paper has introduced
a practical method to compute the conformal structures
of general surfaces. The holomorphic one-form (conformal
gradient field) cohomology group and the periods computed
in this paper are the invariants under conformal transforma-
tion group. We will continue to research further applications,
and improve the efficiency of the algorithms.

Appendix A: Homology and Cohomology
Let K be a simplicial complex whose topological realization
|K| is homeomorphic to a compact 2-dimensional manifold.
Suppose there is a piecewise linear embedding,

F : |K| → R3. (26)

The pair (K,F) is called a triangular mesh and we denote
it as M. The q-cells of K are denoted as [v0,v1, · · · ,vq]. A
q-chain is a linear combination of q-simplices,

∑
[v0,v1,···,vq]∈K

c[v0,v1,···,vq][v0,v1, · · · ,vq]. (27)

The set of all q-chains is denoted as CqK. The boundary op-
erator is a linear map from CqK to Cq−1K. Boundary opera-
tor ∂q takes the boundary of a simplex,

∂[v0,v1, · · · ,vq] =
q

∑
i=0

[v0, · · · ,vi−1,vi+1, · · · ,vq]. (28)

Because M has a simplicial complex structure, we
can compute the simplicial homology H∗(K,R) and co-
homology H∗(K,R). We denote the chain complex as
C∗K = {CqK,∂q}q≥0, and cochain complex as C∗K =
{CqK,δq}q≥0, where CqK = Hom(CqK;R).

δqωσ = ω∂q+1σ, (29)

where ω ∈CqK and σ ∈Cq+1K. The kernel of ∂q is ZqK, the
image of ∂q+1 is Bq, and the q-th homology group is

HqK = ZqK/BqK. (30)

Similarly, the kernel of δq is ZqK, the image of δq−1 is BqK,
and the q-th cohomology group is

Hq = ZqK/BqK. (31)

Appendix B: Full rank of the linear system of closedness,
harmonity and duality
In order to prove the nondegeneracy of the linear system of
closedness, harmonity and duality, it is sufficient and neces-
sary to show its kernel space is zero only. Suppose we have
a homology basis {e1,e2, . . .,e2g}, and a one-form ω, such
that ω is closed and harmonic,

R

ei
ω = 0, we would like to

show that ω ≡ 0. First we want to show the integration of ω
on any closed loop is zero. Suppose a curve r is closed, then
r can be represented as a linear combination of ei’s with a
patch boundary, r = ∑2g

i=1 ciei + ∂σ, where σ ∈C2.

Z

r
ω =

2g

∑
i=1

ci

Z

ei

ω +
Z

∂σ
ω =

Z

∂σ
ω. (32)

Because of the closedness condition, the derivative of ω is
zero, δω = 0. According to the Stokes theorem, the above
equation is

Z

∂σ
ω =

Z

σ
δω = 0. (33)

Next, we want to show ω is zero. Suppose ω is nonzero at
an edge [u,v], assume ω([u,v]) > 0, then we extend the edge
[u,v] to a path {v0,v1, . . .,vn}, such that ω([vi,vi+1]) > 0 and
the path can not be extended further. The path has no self in-
tersection, otherwise there is a loop, on which the integration
of ω is positive, contradictory to the previous preposition.
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Let’s examine vn, by construction, the path can not be ex-
tended any further, so for any edges [u,vn] adjacent to it,
ω([u,vn]≥ 0, with ω([vn−1,vn]) > 0. The Laplacian for ω at
vertex vn is

∆ω(vn) = ∑
[u,vn]∈M

ku,vω([u,vn]). (34)

According to appendix E, we can assume ku,v > 0 for all
edges, then the Laplacian at vn is nonzero. Contradiction.

So the space of harmonic one-forms is 2g dimensional.
Our proof is very general, since we only assume that ku,v
are positive. In fact we can prove the following fact, given a
functional on all functions from the universal covering space
of M to R, (or equivalently a functional on all closed one
forms ω = d f ),

E( f ) = ∑
[u,v]∈M

ku,v|| f (u)− f (v)||2. (35)

All the critical points of this functional form a linear space,
and the dimension of this space is 2g. For example, if
we change the harmonic energy to barycentric energy with
ku,v ≡ 1, all the parameterizations with minimum barycen-
tric energy form a 2g linear space.

Appendix C: Wedge product
Suppose ω and τ are two closed one-forms. We con-
struct local isometric coordinates of a face T = [A,B,C].
A(0,0),B(a,0),C(b,c), where a = ||B − A||, b = ||C −
A||cosA, c = ||C − A||sinA. ω and τ can be represented as
piecewise constant one-forms with respect to these coordi-
nates,

ω =
1
ac

(cω[A,B]dx +(aω[A,C]−bω[A,B])dy) (36)

τ =
1
ac

(cτ[A,B]dx +(aτ[A,C]−bτ[A,B])dy) (37)

By direct wedge product defined for De Rham one-forms,
we get

ω∧ τ =
1
ac

(−ω[A,B]τ[C,A]+ ω[C,A]ω[A,B])dx∧dy.(38)

Then
Z

T
ω∧ τ =

1
2
(−ω[A,B]τ[C,A]+ ω[C,A]ω[A,B]). (39)

Because A,B,C are circular symmetric, by circulating
A,B,C, we get two similar equations. By adding them to-
gether, we get

Z

T
ω∧ τ =

1
6

∣

∣

∣

∣

∣

∣

ω[A,B] ω[B,C] ω[C,A]
τ[A,B] τ[B,C] τ[C,A]

1 1 1

∣

∣

∣

∣

∣

∣

. (40)

Suppose τ ∈ Z1, then we build the same local coordinates
system and represent τ as formula [6], then use the formula
of Hodge star,

∗dx = +dy, ∗dy = −dx. (41)

Then suppose T is a face, and the three edges are
{d0,d1,d2}, their lengths are {l0, l1, l2} respectively, then

Z

T
ω∧ ∗τ = UMV T , (42)

where U = (ωd0,ωd1), V = (ωd0,ωd1), and

M =
1
8s

(

2l2
1 −l2

1 − l2
2 + l2

0
−l2

1 − l2
2 + l2

0 2l2
2

)

(43)

Because d0,d1,d2 are circular symmetric, by circulating
them we get the other two equations. Adding them together,
we get

U = (ωd0,ωd1,ωd2), V = (τd0,τd1,τd2), and

M =
1

24s





−4l2
0 l2

0 + l2
1 − l2

2 l2
0 + l2

2 − l2
1

l2
1 + l2

0 − l2
2 −4l2

1 l2
1 + l2

2 − l2
0

l2
2 + l2

0 − l2
1 l2

2 + l2
1 − l2

0 −4l2
2





(44)

Appendix D: Full rank of the linear system of wedge
products
Suppose a homology basis is {e1,e2, . . .,e2g}, the dual har-
monic one-form basis is {ω1,ω2, . . .,ω2g}, we would like to
show that the matrix









R

ω1 ∧ω1
R

ω1 ∧ω2 . . .
R

ω1 ∧ω2g
R

ω2 ∧ω1
R

ω2 ∧ω2 . . .
R

ω2 ∧ω2g
. . . . . . . . . . . .

R

ω2g ∧ω1
R

ω2g ∧ω2 . . .
R

ω2g ∧ω2g









(45)

is of full rank.
First, we can assume ei’s are a set of canonical homology

basis. That means ei only intersects with ei+g at one point,
for all i = 1,2, . . .,g, as shown in figure 2. Then there exists
a fundamental domain D , such that

∂D = e1e1+ge−1
1 e−1

1+ge2e2+ge−1
2 e−1

2+g . . .ege2ge−1
g e−1

2g
(46)

The wedge product ωi ∧ω j can be geometrically interpreted
as the oriented area of the 4g−gon D embedded in the plane,
the embedding is defined as follows: We choose one point as
the base point, given a point p ∈ D, find an arbitrary path r
from the base to it, then

f (p) = (

Z

r
ωi,

Z

r
ω j). (47)

It is easy to see (ωi,ωi+g) will map the boundary of ∂D
to a curved square. For (ωi,ω j), j 6= i + g, ∂D is mapped to
two curved segments. This shows

Z

ωi ∧ω j = δ j
i+g, i < g, i < j. (48)

So the matrix 45 is non-degenerated.
In general cases, the homology basis is not canonical, then

there exists a linear transformation B to map the basis to the
canonical one. It is easy to show that the dual harmonic one-
form bases can be transformed by B−1. Wedge product is
bilinear, so the new 45 is still nondegenerated.
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Appendix E: Smooth Surface with Triangulation with All
Acute Angles
We want to prove that each smooth surface admits a triangu-
lation with all acute angles. Here we only sketch the proof
for genus zero closed surfaces.

Suppose S is a genus zero smooth surface, then S can be
conformally mapped to S2 without singularities. A sphere
can be triangulated with all acute angles easily, one example
is to subdivide an octahedron and map each line segment to a
geodesic on the sphere. Then we map this triangulation back
to S. Because the mapping is angle preserving, the triangula-
tion on S is also with all acute angles. We can use a mesh to
approximate S by changing each curved triangle to a planar
one. If the triangulation is dense enough, the planar triangle
is very close to the curved one, and each angle is acute.

For surfaces with higher genus and boundaries, the proof
can be conducted in a similar way. Hence, for a smooth sur-
face, we can find a mesh to approximate it, such that the
string constant ku,v is positive for each edge.
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(a) Punched surface (b) A homology basis (c) A conformal gradient base. (d) A conformal gradient base
and double covering.

(e) A special conformal gradient (f) Global conformal atlas (g) Conformal geometry image (h) Regular connectivity.
field with high uniformity

Figure 7: Process of global conformal parameterization and generating a geometry image.

(a) Spherical conformal map of(b) The global parameterization (c) One parameterization with (d) Another parameterization with
the bunny mesh. induced from (a) topology modification topology modification

Figure 8: Improve uniformity of the global conformal parameterization by topology modification.

(e) Conformal parameterization(f) Conformal parameterization(g) Conformal parameterization(h) Conformal parameterization
of genus one surface of genus 16 surface computed by double covering of genus three surface

Figure 9: Global conformal parameterization results.
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